

DiaReam

Vos solutions pour des trous de haute précision

Alésoirs monoblocs ou à inserts, fixes ou réglables

INDEX

Présentation de DIAGER INDUSTRIE	4-6
La gamme DiaReam	7
Nos solutions d'ALÉSAGE	
CARBURE MONOBLOC DE HAUTE PRÉCISION	8
CARBURE MONOBLOC UNIVERSEL	9-10
CORPS ACIER INSERTS BRASÉS FIXES OU RÉGLABLES (EXPANSIBLES)	11-12
CORPS ACIER INSERTS BRASÉS FIXES OU RÉGLABLES (EXPANSIBLES) GOUJURES HÉLICE À GAUCHE	13-14
RING EXPANSIBLE ACIER AVEC INSERTS BRASÉS	15
RING EXPANSIBLE – CORPS D'OUTIL	16-17
ATTACHEMENT RÉGLABLE RADIAL / ANGULAIRE	19-21
AUTRES TECHNOLOGIES D'OUTILS D'ALÉSAGE	22-23
Procédure de réglages et instructions	24-25
Causes et remèdes	26-27
Conditions de coupes	28-31
Concevez votre outil	32-33

Zoom sur...

page 9

Alésoirs à inserts brasés réglables goujure droite page 12

Alésoirs à inserts brasés fixes hélice à gauche page 13

page 8

DÉCOUVREZ DES SOLUTIONS POUR L'ALÉSAGE ET BIEN PLUS ENCORE

DIAGER® INDUSTRIE

NOS 5 SEGMENTS

Perçage

Affûtage

Fraisage

Alésage

NOUVEAU 2025

Ring expansible avec inserts brasés page 15

Corps de ring expansible page 16

Corps de ring pour système d'attachements réglable

page 17

Attachements page 19

DIAGER INDUSTRIE,

L'EXPERTISE TECHNIQUE AU SERVICE DE VOS PERFORMANCES

Depuis bientôt 70 ans, Diager Industrie conçoit et fabrique en France des outils coupants rotatifs en carbure monobloc. Installée à Poligny, dans le Jura, notre entreprise s'illustre comme un acteur de référence dans la fabrication d'outils de perçage, fraisage et alésage, standards ou spéciaux, destinés aux environnements industriels les plus exigeants.

UNE MAÎTRISE COMPLÈTE DE LA CHAÎNE DE VALEUR

De la conception à la fabrication, en passant par les essais et le suivi technique, nous maîtrisons l'ensemble des processus de production. Notre parc de 135 machines d'usinage, dont 45 à commande numérique, nous permet de garantir réactivité, qualité et innovation.

PARTENAIRE DES SECTEURS LES PLUS EXIGEANTS

Notre savoir-faire est reconnu par les grands noms de l'industrie mécanique, aéronautique, spatiale et automobile. Nous ne fournissons pas simplement des outils : nous concevons des solutions globales adaptées à vos besoins spécifiques, pour une performance optimale sur vos lignes de production.

LA FORCE D'UN GROUPE, L'AGILITÉ D'UN EXPERT

Diager Industrie s'appuie sur les synergies d'un groupe solide tout en conservant la souplesse d'une entreprise à taille humaine. Cette dualité nous permet de répondre avec précision à vos cahiers des charges, de garantir la performance de nos outils et de contribuer activement à la compétitivité de vos opérations d'usinage.

INNOVATION, RESPONSABILITÉ, ENGAGEMENT:

NOTRE ADN

LA R&D AU CŒUR DE NOTRE DÉVELOPPEMENT

L'innovation est au cœur de notre stratégie. Nous investissons chaque année dans la recherche et le développement pour anticiper les évolutions de vos besoins et concevoir des outils toujours plus performants. Nos équipes R&D développent des solutions sur mesure, validées en conditions réelles grâce à nos plateformes d'essai internes.

FOURNISSEUR DE SOLUTIONS, PAS SEULEMENT D'OUTILS

Nos experts ne se contentent pas de créer des outils : ils conçoivent également les procédés d'usinage optimaux pour vos applications. Cette approche globale nous permet de nous engager sur la performance et la rentabilité de nos solutions, avec une maîtrise intégrale des coûts et des temps de production.

UNE EXIGENCE DE QUALITÉ À CHAQUE ÉTAPE

Chez Diager Industrie, la qualité est une exigence quotidienne, portée par des engagements concrets et mesurables. De la sélection rigoureuse des matières premières jusqu'au contrôle final des outils, chaque étape de production est encadrée par des standards stricts et une traçabilité complète. Grâce à un parc machines de dernière génération et à des moyens de contrôle performants, nous garantissons des outils fiables, constants et conformes aux cahiers des charges les plus exigeants. Certifiée ISO 9001 et ISO 14001, notre organisation qualité s'inscrit dans une logique d'amélioration continue, au service de vos performances industrielles.

UNE ENTREPRISE RESPONSABLE ET ENGAGÉE

Consciente de son impact, Diager Industrie agit au quotidien pour limiter son empreinte environnementale. Nous avons mis en place une politique environnementale rigoureuse et intégrons les principes de la Responsabilité Sociétale des Entreprises (RSE) dans toutes nos décisions stratégiques. Cette démarche, véritable philosophie d'entreprise, a été reconnue par une labellisation officielle.

VOUS ACCOMPAGNER, DURABLEMENT

Choisir Diager Industrie, c'est faire le choix d'un partenaire impliqué, à l'écoute, et résolument tourné vers l'efficacité durable.

Nos équipes vous accompagnent dans la durée, avec un suivi technique de proximité, pour garantir la réussite de vos projets industriels.

VOTRE PARTENAIRE EN ALÉSAGE DE PRÉCISION POUR LES INDUSTRIES LES PLUS EXIGEANTES

Chez DIAGER INDUSTRIE, nous vous proposons des outils d'alésage de différentes technologies et conceptions pensés pour être adaptés aux exigences les plus strictes des secteurs industriels comme l'automobile et l'aéronautique. Notre engagement : vous garantir performance, fiabilité et excellence technique à chaque étape de votre process d'usinage.

UNE GAMME D'ALÉSOIRS POUR UNE PRÉCISION MICROMÉTRIQUE

Nos solutions sont pensées pour répondre précisément à vos exigences, qu'il s'agisse de tolérances dimensionnelles ou géométriques strictes ou plus larges, du niveau de qualité d'état de surface requis, de l'aspect économique en terme de temps de cycle ou de coût outils par pièce. Tout en assurant une fiabilité et capabilité des résultats en production de la petite à la grande série. Chaque pièce usinée incarne notre engagement en matière de qualité.

INNOVATION AU CŒUR DE NOS SOLUTIONS

Grâce à une R&D dynamique, nous intégrons les dernières technologies : géométries optimisées, revêtements avancés... Pour vous, c'est plus de performance, moins d'usure, et une productivité maximisée.

DES SOLUTIONS D'ALÉSAGE SUR MESURE, ADAPTÉES À VOS ENJEUX

Chaque application est unique : nous développons des outils personnalisés pour vos pièces complexes, vos matériaux difficiles ou vos contraintes de production spécifiques.

FIABILITÉ, LONGÉVITÉ, RENTABILITÉ

Nos outils sont conçus pour durer, réduire vos temps de cycle et vos coûts d'usinage, tout en maintenant une qualité constante.


La gamme DiaReam

DiaReam, une large gamme d'Alésoir de Haute Performance Pour un choix optimisé en fonction de l'application

Guide de choix

DiaReam	Alésoirs carbure monobloc de haute précision	Alésoirs carbure monobloc universel	Alésoirs inserts brasés fixes	Alésoirs inserts brasés réglables (expansibles)	Ring expansible	Alésoirs à patin et lame réglable	Alésoirs étagés monobloc, inserts brasés ou vissés
Diditodiii	2901 > 2903	2904 > 2907	2908 > 2910 2914 > 2915	2911 > 2913 2916 > 2917	2918 > 2921	Spécial	Spécial
PRODUIT							
Niveau de précision	IT7-8	IT7-9	IT7-8	IT6-7	IT6-7	IT5-7	IT7-10
Diamètres Ø	3-20	3.765-20.250	5.6-60.5	5.6-60.5	50.6-205.6	8-200	20-200
Gamme	semi-std	std et semi-std	semi-std et spécial	semi-std et spécial	semi-std et spécial	corps = spécial plaq = semi-spécial	corps = spécial plaq = ISO
Qualité précision dimensionnelle/ géométrique	***	***	***	****	****	****	**
Qualité d'état de surface	***	***	***	****	****	****	***
Coût outil/pièce	****	***	***	***	***	****	****
Productivité (tcy)	****	***	****	****	****	**	**
Facilité de mise en œuvre	****	****	****	***	****	★☆	***
Économie d'investissement de départ (corps + attachement + moyens de réglages)	****	****	***	***	***	**	**
Reconditionnement	V	V	V	V	V	corps uniquement	corps uniquement
> RETROUVEZ NOS PRODUITS EN PAGE	8	9-10	11-13	12-14	15-16-17	22	22

CARBURE MONOBLOC DE HAUTE PRÉCISION

2901L	2902L	2903L
Trou borgne goujure droite	Trou débouchant goujure droite	Trou débouchant hélice à gauche

*	sans	arrosage	interne.

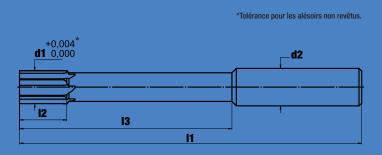
	d1 Ø	d2 Ø	11	12	13	Z	
	Ø3 – Ø4*	4	60	12	32	4	
	Ø4.01 – Ø6	6	76	12	40	6	
_	Ø6.01 – Ø8	8	101	16	65	6	
Série L	Ø8.01- Ø10	10	106	16	68	6	
Sé	Ø10.01– Ø12	12	130	20	85	6	
	Ø12.01 – Ø14	12	150	20	85	6	
	Ø14.01 – Ø16	16	150	20	100	6	
	Ø16.01– Ø18	16	150	20	100	6	
	Ø18.01 – Ø20	20	160	20	110	6	
Р	Aciers bas carbone faiblement alliés						
	Aciers fortement alliés, aciers d'outillage dureté <45 Hrc						
М	Inox austénitique						
IVI	Inox martensitique						
K	Fontes grises ou lamellaires						RIE
K	Fontes à graphites sphéroidales, vermiculaires						
N	Métaux non ferre	ıx, cuivre,	Alliages d'	aluminium	avec Si<	7%	GÉOMÉTRIE
IV							

	Carbure non revê	Carbure revêtu	Carbure revêtu A	Carbure revêtu A	
1	UWNK01	CWPK01	CWMP01	CWSM01	
	ı	l	l		

Р	Aciers bas carbone faiblement alliés
r	Aciers fortement alliés, aciers d'outillage dureté <45 Hrc
М	Inox austénitique
IVI	Inox martensitique
K	Fontes grises ou lamellaires
K	Fontes à graphites sphéroidales, vermiculaires
N	Métaux non ferreux, cuivre, Alliages d'aluminium avec Si<7%
N	Alliages d'aluminium Si>7%
S	Alliages réfractaires base nickel, chrome
3	Alliages de Titane, Titane
Н	Aciers traités Hrc >45 Hrc
	•

/ 11 \					
GS01	GS01	GS07			N.O.
GS02	GS02	GS07			
GS02	GS02	GS07			
GS02	GS02	GS07			
GS01	GS01	GS07			
GS01	GS01	GS07			
GS01	GS01	GS07			
GS03	GS03	GS07			
GS02	GS02	GS02			
GS02	GS02	GS02			
GS02	GS02	GS07			

Alésage à réaliser : Ø6.10H7 42CD4 (acier) longueur 45 mm trou borgne Référence : 2901L- Ø6.10H7 - C - GS01 - CWPK01


2901L
6.10H7
C (Cylindrique)
GS01
CWPK01

Autre type de géométrie requise (avec coupe en bout, rayons) : à spécifier
Reconditionnable par nos soins (réaffûtable)

Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

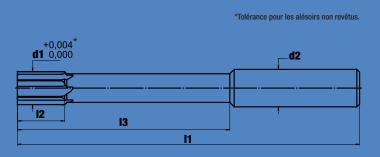
^{**}C (Cylindrique) - W (Weldon) - N (Whistle notch)

CARBURE MONOBLOC UNIVERSEL

Côtes intermédiaires de diamètre d'alésoirs réalisées : tous les 0.005 mm.

d1 Ø d2 Ø I1 I2 I3 Z 3.765 - 4.250 6 75 12 47 4 4.255 - 4.750 6 80 12 52 4 4.755 - 6.250 6 86 16 56 4 6.255 - 6.750 8 86 16 56 4 6.755 - 8.250 8 86 16 56 6 8.255 - 10.250 10 92 20 60 6 10.255 - 12.250 12 95 20 60 6 12.255 - 14.250 14 115 25 80 6 14.255 - 16.250 16 130 30 85 6	UWNK01 Carbure non revêtu	CWPK01 Carbure revêtu	Carbure revêtu	Carbure revêtu	-
4.255 - 4.750 6 80 12 52 4 4.755 - 6.250 6 86 16 56 4 6.255 - 6.750 8 86 16 56 4 6.755 - 8.250 8 86 16 56 6 8.255 - 10.250 10 92 20 60 6 10.255 - 12.250 12 95 20 60 6 12.255 - 14.250 14 115 25 80 6				Carbure	
4.755 - 6.250 6 86 16 56 4 6.255 - 6.750 8 86 16 56 4 6.755 - 8.250 8 86 16 56 6 8.255 - 10.250 10 92 20 60 6 10.255 - 12.250 12 95 20 60 6 12.255 - 14.250 14 115 25 80 6				Cart	-
6.255 - 6.750		K01			-
6.755 - 8.250	WNK01	K01	_		-
10.255 - 12.250 12 95 20 60 6 12.255 - 14.250 14 115 25 80 6	WNK01	K01	_		
10.255 - 12.250 12 95 20 60 6 12.255 - 14.250 14 115 25 80 6	WNK01	K01	_		
12.255 - 14.250	WNK01	5	_		
	Ì		0	CWSM01	
14.255 - 16.250		M	CWMP01	NSI	
		5	ટ	ි	
16.255 - 18.250 18 140 30 95 6					
18.255 - 20.250 20 140 30 95 6					Nuances
P Aciers					Nua
M Aciers inoxydables			•		
K Fontes N Matériaux non ferreux GU01 (universel)					
N Matériaux non ferreux					
S Alliages réfractaires Titane					
H Aciers traités >50 Hrc					

Alésage à réaliser : **Ø10H7 XC48 (acier) longueur 30 mm trou débouchant, arrosage de l'outil par le centre**Référence : **2904S - Ø10.005 - C - GU01 - CWPK01**


Série	2904S
Ø de l'alésoir	10.005
Type de queue**	C (Cylindrique)
Géométrie	GU01
Nuance de coupe	CWPK01

Produit standard en partie stocké en non-revêtu (délai court) Reconditionnable par nos soins (réaffûtable)

Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

^{**}C (Cylindrique) - W (Weldon) - N (Whistle notch)

CARBURE MONOBLOC UNIVERSEL

Côtes intermédiaires de diamètre d'alésoirs réalisées : tous les 0.005 mm.

2906S	2907S
20000	20070
Trou	Trou borgne
borgne	goujure
goujure droite	droite coupe en bout
uioite	GII DOUL

									revé	vêtu	vêtu	vêtu	
d1 Ø	d2 Ø	l1	I 2	13	Z				uou e	nre re	ure re	ure re	
3.61 - 6.10	6	80	15	55	4				arbur	Carb	Carb	Carb	
6.11 - 8.10	8	90	20	60	4				٥				
8.11 - 10.10	10	90	20	60	5								
10.11 - 12.10	12	90	20	60	5			111					
12.10 - 14.10	14	105	25	75	5		National Association of the Control		<u>8</u>	<u> </u>	P01	M01	
14.11 - 16.10	16	105	25	75	5			All of the second	MN	WP	N.	:WSI	
16.11 - 18.10	18	120	30	85	5				_		0	0	
18.11 - 20.10	20	130	30	95	5								Nuances
Aciers													Nua
Aciers inoxydables													
Fontes						ÉTRIE	GU01 (u	niversel)					
Matériaux non ferre	eux					GÉOM							
Alliages réfractaires	s Titane												
Aciers traités >50 F	Irc												
	3.61 - 6.10 6.11 - 8.10 8.11 - 10.10 10.11 - 12.10 12.10 - 14.10 14.11 - 16.10 16.11 - 18.10 18.11 - 20.10 Aciers Aciers inoxydables Fontes Matériaux non ferre	3.61 - 6.10 6 6.11 - 8.10 8 8.11 - 10.10 10 10.11 - 12.10 12 12.10 - 14.10 14 14.11 - 16.10 16 16.11 - 18.10 18 18.11 - 20.10 20 Aciers Aciers inoxydables	3.61 - 6.10	3.61 - 6.10 6 80 15 6.11 - 8.10 8 90 20 8.11 - 10.10 10 90 20 10.11 - 12.10 12 90 20 12.10 - 14.10 14 105 25 14.11 - 16.10 16 105 25 16.11 - 18.10 18 120 30 18.11 - 20.10 20 130 30 Aciers Aciers Aciers inoxydables Fontes Matériaux non ferreux Alliages réfractaires Titane	3.61 - 6.10 6 80 15 55 6.11 - 8.10 8 90 20 60 8.11 - 10.10 10 90 20 60 10.11 - 12.10 12 90 20 60 12.10 - 14.10 14 105 25 75 14.11 - 16.10 16 105 25 75 16.11 - 18.10 18 120 30 85 18.11 - 20.10 20 130 30 95 Aciers Aciers Matériaux non ferreux Alliages réfractaires Titane	3.61 - 6.10 6 80 15 55 4 6.11 - 8.10 8 90 20 60 4 8.11 - 10.10 10 90 20 60 5 10.11 - 12.10 12 90 20 60 5 12.10 - 14.10 14 105 25 75 5 14.11 - 16.10 16 105 25 75 5 16.11 - 18.10 18 120 30 85 5 18.11 - 20.10 20 130 30 95 5 Aciers Aciers Matériaux non ferreux Alliages réfractaires Titane	3.61 - 6.10	3.61 - 6.10	3.61 - 6.10	Section Sect	Section Sect	Color	3.61 - 6.10

Alésage à réaliser : **Ø10H7 longueur 40 mm XC48 (acier) trou borgne** Référence : **2906S - Ø10.010 - C - GU01 - CWPK01**

Série	2906S
Ø de l'alésoir	10.010
Type de queue**	C (Cylindrique)
Géométrie	GU01
Nuance de coupe	CWPK01

Produit standard en partie stocké en non-revêtu (délai court)
Reconditionnable par nos soins (réaffûtable)

Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

^{**}C (Cylindrique) - W (Weldon) - N (Whistle notch)

CORPS ACIER INSERTS BRASÉS FIXES

В	BRASĖS FIXES					2908L	2909L	2910L	Sér	ie l	ong	ue						
							2908S	2909S	2910S	Sér	ie c	our	te					
d1				d2]	Trou borgne goujure droite	Trou débouchant goujure droite	Sans arrosage interne		h	6		Tol. P Q IT7 -				
	12		11	,							R 0.3 · ∇	a - 0.8 ▽▽		econdit	tionable			
Série	d1 Ø	d2 Ø	11	I2	Z				1									
S	5.600-8.899	12	130 85	85 40	4					⊒				=				
L S	8.900-9.899	12	130 95	85 50	6					n revê	revêtu	revêtu	revêtu	n revêt	evêtu			
L	9.900-15.899	12	160 95	115 50	6					Carbure non revêtu	Carbure revêtu	Carbure revêtu	Carbure revêtu	Cermet non revêtu	Cermet revêtu	PCD	CBN	
L	15.900-18.899	16	180 100	130 50	6					Carb	පි	පි	පී	Cerr	త			
L	18.900-25.899	20	200 120	140 60	6												_	
L	25.900-32.599	25	210 135	150 75	6													
L	32.600-40.599	25	210 135	150 75	8					UWNK02	CWPK02	CWMP02	CWSM02	UCPK02	CCPK02	DIN01	B0H01	
L	40.600-50.599	25	210 135	150 75	8					M	C	Ç	Š	20	25		B	
L	50.600-60.599	32	210 135	150 75	8													seou
	Aciers bas carbon	e faibler	nent alliés				GB01	GB01	GB01									Nuances
P	Aciers fortement a	alliés, ac	iers d'outilla	ige dureté <	45 Hrc		GB02	GB02	GB02									
М	Inox austénitique						GB02	GB02	GB02									
IVI	Inox martensitique	е					GB02	GB02	GB02									
K	Fontes grises ou l	amellair	es			IÉTRIE	GB01	GB01	GB01									
I.	Fontes à graphites	s sphéro	idales, verm	iculaires		MÉ	GB01	GB01	GB01									
N	Métaux non ferreu	x, cuivre,	Alliages d'al	luminium ave	ec Si<7%	GÉOM	GB01	GB01	GB01									
IV.	Alliages d'alumini	um Si>7	%				GB02	GB02	GB02									
S	Alliages réfractair	es base	nickel, chro	me			GB02	GB02	GB02									
3	Alliages de Titane	, Titane					GB03	GB03	GB03									
Н	Aciers traités Hrc	>45 Hrc					GB02	GB02	GB02									

■ Principale application □ Application complémentaire

Alésage à réaliser : **Ø14.05H7 longueur 60 mm dans XC48 (acier) trou débouchant, arrosage de l'outil par le centre**Référence : **2909L - Ø14.05H7 - C - GB01 - UCPK02**

Série	2909L
Ø de l'alésoir	14.05H7
Type de queue*	C (Cylindrique)
Géométrie	GB01
Nuance de coupe	UCPK02

Autres géométries requises (rayon, géométrie spécifique, ...) ou coupe en bout à spécifier

neconditionnable par nos soms	
Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

^{*}C (Cylindrique) - W (Weldon) - N (Whistle notch)

CORPS ACIER INSERTS BRASÉS RÉGLABLES

(EXPANSIBLES) 2913L 2911L 2912L Série longue **2912S 2913S 2911S** Série courte Trou Trou Goujure d2 borgne débouchant droite sans Ø goujure goujure arrosage droite interne droite 12 Série d2 Ø 11 12 Z d1 Ø 130 85 5.600-8.899 12 4 S 85 40 Cermet non revêtu Carbure non revêtu Carbure revêtu 130 85 Carbure revêtu Carbure revêtu Cermet revêtu L S 8.900-9.899 12 6 95 50 SBN L S 160 115 12 9.900-15.899 6 95 50 L S 180 130 15.900-18.899 16 6 100 50 L 200 140 18.900-25.899 20 6 S L S L 120 60 210 150 25.900-32.599 6 135 75 CWMP02 CWSM02 **UWNK02** CWPK02 210 150 32.600-40.599 25 8 S 135 75 L 210 150 40.600-50.599 25 8 S 135 75 S 210 150 50.600-60.599 32 8 135 75 Aciers bas carbone faiblement alliés **GB01 GB01 GB01** P **GB02 GB02 GB02** Aciers fortement alliés, aciers d'outillage dureté <45 Hrc Inox austénitique **GB02 GB02 GB02** M Inox martensitique **GB02 GB02 GB02 SÉOMÉTRIE GB01 GB01 GB01** Fontes grises ou lamellaires K **GB01 GB01 GB01** Fontes à graphites sphéroidales, vermiculaires **GB01 GB01 GB01** Métaux non ferreux, cuivre, Alliages d'aluminium avec Si<7% П N **GB02 GB02 GB02** Alliages d'aluminium Si>7% Alliages réfractaires base nickel, chrome **GB02 GB02 GB02** S **GB03 GB03 GB03** Alliages de Titane, Titane **GB02 GB02** Н Aciers traités Hrc >45 Hrc **GB02**

Principale application Application complémentaire

Alésage à réaliser : **Ø12.5 H6 longueur 60 mm GGG60 (fonte) trou débouchant, arrosage de l'outil par le centre**Référence : **2912L - Ø12.5 H6 - C - GB01 - UCPK02**

Série	2912L
Ø de l'alésoir	12.5H6
Type de queue*	C (Cylindrique)
Géométrie	GB01
Nuance de coupe	UCPK02

Autres géométries requises (rayon, géométrie spécifique, ...) ou coupe en bout à spécifier

Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

^{*}C (Cylindrique) - W (Weldon) - N (Whistle notch)

CORPS ACIER INSERTS BRASÉS FIXES
GOUJURES HÉLICE À GAUCHE

2914L 2915L Série longue **2914S** 2915S Série courte Hélice Trou <u>d2</u> à gauche débouchant Ø sans hélice à arrosage gauche interne 12 11 Série d1 Ø d2 Ø 11 12 Z 130 85 7.900 - 9.899 12 4 S 85 40 Sarbure non revêtu Cermet non revêtu 160 115 Carbure revêtu Carbure revêtu Carbure revêtu Cermet revêtu 9.900 - 11.899 12 4 S 95 50 PC SBN 160 115 12 11.900 - 15.899 6 S 95 50 180 130 15.900 - 18.899 16 6 S 100 50 200 140 18.900 - 25.899 20 6 S 120 60 210 150 25.900 - 32.599 25 6 135 75 CWMP02 CWSM02 CWPK02 210 150 32.600 - 40.599 25 8 135 S 75 210 150 40.600 - 50.599 25 8 S 135 75 210 150 50.600 - 60.599 32 8 Nuances S 135 75 Aciers bas carbone faiblement alliés **GB01 GB01** P **GB02 GB02** Aciers fortement alliés, aciers d'outillage dureté <45 Hrc Inox austénitique **GB02 GB02** M Inox martinsitique **GB02 GB02 SÉOMÉTRIE GB01 GB01** Fontes grises ou lamellaires K **GB01** Fontes à graphites sphéroidales, vermiculaires **GB01 GB01 GB01** Métaux non ferreux, cuivre, Alliages d'aluminium avec Si<7% N **GB02 GB02** Alliages d'aluminium Si>7% Alliages réfractaires base nickel, chrome **GB02 GB02** S **GB03 GB03** Alliages de Titane, Titane **GB02 GB02** Aciers traités Hrc >45 Hrc

Principale application Application complémentaire

Alésage à réaliser : **Ø8.1+/-0.02 longueur 20 mm dans 304L (inox) trou débouchant, arrosage de l'outil par le centre**Référence : **2914S - Ø8.1+/-0.02 - C - GB02 - CWMP02**

2914S
8.1+/-0.02
C (Cylindrique)
GB02
CWMP02

Autres géométries requises (rayon, géométrie spécifique, ...) ou coupe en bout à spécifier

Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

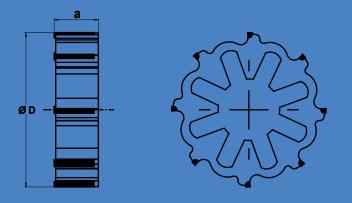
^{*}C (Cylindrique) - W (Weldon) - N (Whistle notch)

CORPS ACIER INSERTS BRASÉS RÉGLABLES (EXPANSIBLES) GOUJURES HÉLICE À GAUCHE

2916L 2917L Série longue **2916S 2917S** Série courte Trou débouchant Sans goujure arrosage hélice à interne qauche 12 Série d2 Ø 12 d1 Ø 11 Z 130 85 7.900-9.899 12 4 S 85 40 Sermet non revêtu 160 115 L S Carbure revêtu Carbure revêtu Carbure revêtu 9.900-11.899 12 6 Cermet revêtu 95 50 PCD 160 115 SBN 12 11.900-15.899 6 S 95 50 180 130 15.900-18.899 16 6 S 100 50 200 140 20 18.900-25.899 6 S 120 60 210 150 25.900-32.599 25 6 S 135 75 CWMP02 CWPK02 CWSM02 210 150 25 8 32.600-40.599 S 135 75 210 150 40.600-50.599 25 8 S 135 75 210 150 32 8 50.600-60.599 S 135 75 Aciers bas carbone faiblement alliés **GB01 GB01** P **GB02 GB02** Aciers fortement alliés, aciers d'outillage dureté <45 Hrc Inox austénitique **GB02 GB02** M Inox martensitique **GB02 GB02 SÉOMÉTRIE GB01** Fontes grises ou lamellaires **GB01** K Fontes à graphites sphéroidales, vermiculaires **GB01 GB01 GB01** Métaux non ferreux, cuivre, Alliages d'aluminium avec Si<7% **GB01** П N **GB02 GB02** Alliages d'aluminium Si>7% Alliages réfractaires base nickel, chrome **GB02 GB02** S **GB03** Alliages de Titane, Titane **GB03 GB02 GB02** Aciers traités Hrc >45 Hrc

Principale application Application complémentaire

Alésage à réaliser : **Ø12.5H6 longueur 30 mm GGG60 (fonte) trou débouchant, arrosage de l'outil par le centre**Référence : **2916S - Ø12.5H6 - C - GB01 - UCPK02**


Série	2916S
Ø de l'alésoir	12.5H6
Type de queue*	C (Cylindrique)
Géométrie	C-GB01
Nuance de coupe	UCPK02

Autres géométries requises (rayon, géométrie spécifique, ...) ou coupe en bout à spécifier

Reconditionnable par nos soms	
Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

^{*}C (Cylindrique) - W (Weldon) - N (Whistle notch)

RING EXPANSIBLE ACIER AVEC INSERTS BRASÉS

2918

Trou borgne et débouchant goujure droite

Carbure non revêtu

Carbure revêtu Carbure revêtu

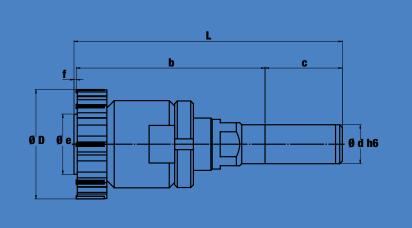
Carbure revêtu Cermet non revêtu

Cermet revêtu

CBN

Ø D a 50.600-79.599 18.5 79.600-100.599 18.5	Z					
	6					
70 600-100 500 19 5						
79.000-100.099 10.0	8					
110.66-110.599 18.5	10					
110.6-205.599 18.5	12					
Aciers bas carbone faiblement alliés						
Aciers fortement alliés, aciers	Aciers fortement alliés, aciers d'outillage dureté <45 Hrc					
Inox austénitique						
Inox martensitique	Inox martensitique					
Fontes grises ou lamellaires	Fontes grises ou lamellaires					
• •	Fontes à graphites sphéroidales, vermiculaires					
Fontes grises ou lamellaires Fontes à graphites sphéroidales, vermiculaires Métaux non ferreux, cuivre, Alliages d'aluminium avec Si<7%						
Alliages d'aluminium Si>7%						
Alliages réfractaires base nickel, chrome						
Alliages de Titane, Titane						
H Aciers traités Hrc >45 Hrc						

	UWNK02	CWPK02	CWMP02	CWSM02	UCPK02	CCPK02	DINO1	B0H01	Nuances
GB01									Nua
GB02									
GB02									
GB02									
GB01									
GB01									
GB01									
GB02									
GB02									
GB03									
GB02									

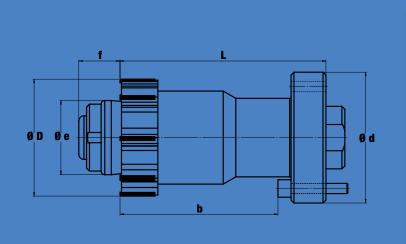

Alésage à réaliser : **Ø80H7 longueur 60 mm FGL300 trou débouchant, arrosage de l'outil par le centre**Référence : **2918 - Ø80H7 - GB01 - CWPK02**

Série	2918
Ø de l'alésoir	80H7
Géométrie	GB01
Nuance de coupe	CWPK02

Autres géométries requises (rayon, géométrie spécifique, ...) ou coupe en bout à spécifier

Attachements	Page 18-21
Informations techniques	Page 24-25
Conditions de coupe	Page 28-31

RING EXPANSIBLE – CORPS D'OUTIL



Série	Ref	Ref	Ø D	L	b	С	Ø e	f	Ø d h6
S	2919A-S	2920A-S	50.600 - 60.599	166.5	105	60	27.8	1.5	20
L	2919A-L	2920A-L	001000 001000	275.5	214	60	27.8	1.5	20
S	2919B-S	2920B-S	60.600-70.599	166.5	105	60	37	1.5	25
L	2919B-L	2920B-L	00.000 70.000	298.5	237	60	37	1.5	25
S	2919C-S	2920C-S	70.600-79.599	166.5	105	60	37	1.5	25
L	2919C-L	2920C-L	70.000-79.599	298.5	237	60	37	1.5	25
S	2919D-S	2920D-S	79.600-90.599	166.5	105	60	53.2	1.5	32
L	2919D-L	2920D-L	79.000-90.599	301.5	240	60	53.2	1.5	32
S	2919E-S	2920E-S	90.600-100.599	166.5	105	60	53.2	1.5	32
L	2919E-L	2920E-L	90.000-100.599	301.5	240	60	53.2	1.5	32
S	2919F-S	2920F-S	100.600-110.599	166.5	105	60	70.4	1.5	32
L	2919F-L	2920F-L	100.000-110.599	301.5	240	60	70.4	1.5	32
S	2919G-S	2920G-S	110.600-115.599	166.5	105	60	77.4	1.5	32
L	2919G-L	2920G-L	110.000-115.599	301.5	240	60	77.4	1.5	32
S	2919H-S	2920H-S	115.600-125.599	166.5	105	60	83.4	1.5	32
L	2919H-L	2920H-L	110.000-120.099	301.5	240	60	83.4	1.5	32
S	2919I-S	2920I-S	125.600-132.599	166.5	105	60	87.4	1.5	32
L	2919I-L	2920I-L	123.000-132.399	301.5	240	60	87.4	1.5	32
S	2919J-S	2920J-S	132.600-139.599	166.5	105	60	87.4	1.5	32
L	2919J-L	2920J-L	132.000-138.388	301.5	240	60	87.4	1.5	32
S	2919K-S	2920K-S	139.600-145.599	166.5	105	60	99.4	1.5	32
L	2919K-L	2920K-L	139.000-143.399	301.5	240	60	99.4	1.5	32
S	2919L-S	2920L-S	145.600-150.599	166.5	105	60	104.4	1.5	32
L	2919L-L	2920L-L	145.000-150.599	301.5	240	60	104.4	1.5	32

Attachements, voir Page 18-21

RING EXPANSIBLE – CORPS D'OUTIL RÉGLABLE RADIAL ANGULAIRE



_						
Ref	Ø D	L	b	Ø e	f	Module Ø d
2921A	50.600 - 60.599	118	89	30.3	22.5	100
2921B	60.600 - 70.599	126	97	40	24.5	100
2921C	70.600 - 79.599	126	97	40	24.5	100
2921D	79.600 - 90.599	126	97	56.2	28.5	100
2921E	90.600 - 100.599	126	97	56.2	28.5	100
2921F	100.600 - 110.599	157	-	73.4	35.5	100
2921G	110.600 - 115.599	157	-	80.4	35.5	100
2921H	115.600 – 125.599	157	-	86.4	35.5	100
29211	125.600 - 132.599	157	-	90.4	35.5	100
2921J	132.600 - 139.599	157	-	90.4	35.5	100
2921K	139.600 - 145.599	157	-	101.1	35.5	100
2921L	145.600 - 155.599	157	-	107.1	35.5	100
2921M	155.600 - 165.599	157	-	107.4	49.5	100
2921N	165.600 - 175.599	157	-	117.4	49.5	100
29210	175.600 – 185.599	157	-	127.4	49.5	100
2921P	185.600 - 195.599	157	-	137	49.5	100
2921Q	195.600 – 205.599	157	-	145.4	49.5	100

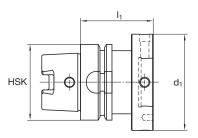
Attachements sur broche, voir Page 18-21

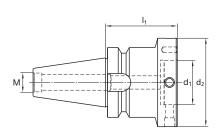
VISEZ L'EXCELLENCE!

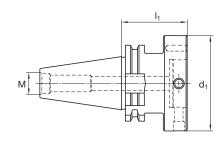
ATTACHEMENT RÉGLABLE RADIAL / ANGULAIRE

HSK-A	d1	l1	Ref
40	60	55	M_HSK-A40_60_55
50	60	60	M_HSK-A50_60_60
50	80	60	M_HSK-A50_80_60
50	70	60	M_HSK-A50_70_60
63	60	60	M_HSK-A63_60_60
63	80	60	M_HSK-A63_80_60
63	70	60	M_HSK-A63_70_60
63	100	65	M_HSK-A63_100_65
63	117	65	M_HSK-A63_117_65
80	60	50	M_HSK-A80_60_50
80	80	60	M_HSK-A80_80_60
80	70	60	M_HSK-A80_70_60
80	100	65	M_HSK-A80_100_65
80	117	65	M_HSK-A80_117_65
100	60	55	M_HSK-A100_60_55
100	70	55	M_HSK-A100_70_55
100	70	60	M_HSK-A100_70_60
100	70	80	M_HSK-A100_70_80
100	80	45	M_HSK-A100_80_45
100	80	55	M_HSK-A100_80_55
100	80	85	M_HSK-A100_80_85
100	80	130	M_HSK-A100_80_130
100	100	65	M_HSK-A100_100_65
100	100	170	M_HSK-A100_100_170
100	117	65	M_HSK-A100_117_65
100	140	75	M_HSK-A100_140_75

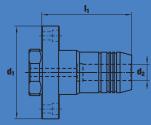
ВТ	d1	d2	l1	M	Ref
40	60	55	30	M 16	M_BT40_60_55_30
40	80	65	40	M 16	M_BT40_80_65_40
40	80	100	40	M 16	M_BT40_80_100_40
40	100	60	50	M 16	M_BT40_100_60_50
40	70	55	35	M 16	M_BT40_70_55_35
40	60	60	30	M 24	M_BT40_60_60_30
50	60	70	30	M 24	M_BT50_60_70_30
50	70	70	35	M 24	M_BT50_70_70_35
50	80	70	40	M 24	M_BT50_80_70_40
50	100	70	50	M 24	M_BT50_100_70_50
50	117	80	60	M 24	M_BT50_117_80_60
50	140	80	80	M 24	M_BT50_140_80_80


SK-SA	d1	l1	M	Ref
40	60	50	M 16	M_SK40_60_50
40	70	50	M 16	M_SK40_70_50
40	80	55	M 16	M_SK40_80_55
40	100	60	M 16	M_SK40_100_60
40	140	60	M 16	M_SK40_140_60
50	60	50	M 24	M_SK50_60_50
50	70	50	M 24	M_SK50_70_50
50	80	50	M 24	M_SK50_80_50
50	100	60	M 24	M_SK50_100_60
50	117	60	M 24	M_SK50_117_60
50	140	60	M 24	M_SK50_140_60

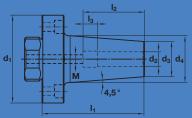



HSK-A

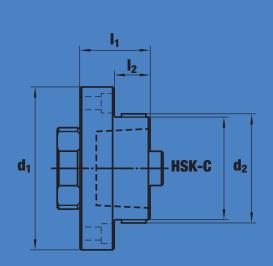
BT



SK-SA


ATTACHEMENT RÉGLABLE RADIAL / ANGULAIRE — MANDRIN HYDRAULIQUE ET DE FRETTAGE

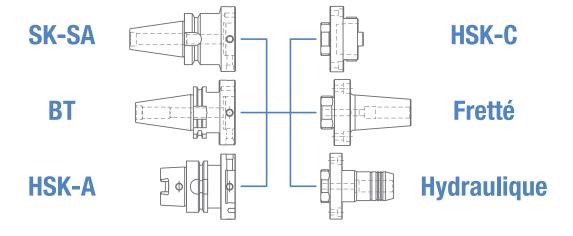
Module pour mandrin hydraulique



Module pour mandrin de frettage

d1	d2	l1	Ref.
70	16	50	ModH-70-16-50
80	12	77.5	ModH-80-12-77.5
80	16	82.5	ModH-80-16-82.5
80	20	82.5	ModH-80-20-82.5
80	25	90	ModH-80-25-90
100	12	90	ModH-100-12-90
100	25	100	ModH-100-25-100
100	32	103	ModH-100-32-103
117	32	103	ModH-117-32-103
70	5/8"	50	ModH-70-5/8-50
80	1/2"	77.5	ModH-80-1/2-77.5
80	5/8"	82.5	ModH-80-5/8-82.5
80	3/4"	82.5	ModH-80-3/4-82.5
80	1"	90	ModH-80-1-90
100	1/2"	90	ModH-100-1/2-90
100	5/8"	90	ModH-100-5/8-90
100	3/4"	90	ModH-100-3/4-90
100	1"	100	ModH-100-1-100
100	1 1/4"	103	ModH-100-1 1/4-103
117	1 1/4"	103	ModH-117-1 1/4-103

d1	d2	d3	d4	l1	12	I 3	M	Ref.
60	6	21	27	70	36	10	M 5	ModF-60-6-70
60	8	21	27	70	36	10	M 6	ModF-60-8-70
60	10	24	32	70	42	10	M 8x1	ModF-60-10-70
60	12	24	32	70	47	10	M 10x1	ModF-60-12-70
60	14	27	34	70	47	10	M 10x1	ModF-60-14-70
70	14	27	34	75	47	10	M 10x1	ModF-70-14-75
70	16	27	34	75	50	10	M 12x1	ModF-70-16-75
70	16	27	34	175	50	10	M 12x1	ModF-70-16-175
80	6	21	27	70	36	10	M 5	ModF-80-6-70
80	8	21	27	70	36	10	M 6	ModF-80-8-70
80	10	24	32	70	42	10	M 8x1	ModF-80-10-70
80	12	24	32	70	47	10	M 10x1	ModF-80-12-70
80	14	27	34	75	47	10	M 10x1	ModF-80-14-75
80	16	27	34	75	50	10	M 12x1	ModF-80-16-75
80	18	33	42	80	50	10	M 12x1	ModF-80-18-80
80	20	33	42	80	52	10	M 16x1	ModF-80-20-80
80	20	33	42	175	52	10	M 16x1	ModF-80-20-175
80	25	44	53	80	58	10	M 16x1	ModF-80-25-80
80	32	44	53	80	61	10	M 16x1	ModF-80-32-80
100	25	44	53	80	58	10	M 16x1	ModF-100-25-80
100	32	44	53	80	61	10	M 16x1	ModF-100-32-80


ATTACHEMENT RÉGLABLE RADIAL / ANGULAIRE — MANDRIN POUR HSK-C

Module pour mandrin HSK-C

HSK-C	d1	d2	l1	12	Ref.
32	60	37	26	13	ModM-32-26
40	70	45	30	15	ModM-40-30
50	80	55	35	18	ModM-50-35
63	100	70	43	22	ModM-63-43
80	117	87	50	29	ModM-80-50
80	100	87	90	69	ModM-80-90
100	140	110	70	42	ModM-100-70
100	100	110	110	110	ModM-100-110


Système mandrin réglable

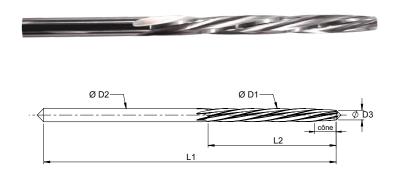
AUTRES TECHNOLOGIES D'OUTILS D'ALÉSAGE

1. BARRES D'ALÉSAGE SPÉCIALES À PLAQUETTES ISO (AVEC CARTOUCHE OU IMPLANTATION DIRECTE)

Large gamme de plaquettes ISO
PCD/CBN.
Plaquettes ISO carbure/cermet
du carburier de votre choix. Nous consulter.

2. ALÉSOIRS À LAME CARBURE RÉGLABLE, PATINS CARBURE, CERMET OU PCD

Alésoirs de très haute précison à lame réglable. Large gamme de lames carbure, cermet ou PCD avec géométrie adaptée à vos applications. Nous consulter.



3. ALÉSOIRS SPÉCIAUX

Alésoirs spéciaux, étagés monobloc ou inserts brasés (carbure, cermet ou PCD). Nous consulter.

4. ALÉSOIRS À MAIN, HSS

Alésoirs à main type américain, façon Paris, coniques..., alésoirs HSS. Nous consulter.

PROCÉDURE DE RÉGLAGES

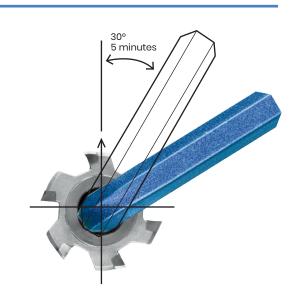
ALÉSOIRS RÉGLABLES (EXPANSIBLES)

PRINCIPES DE BASE

- > Les alésoirs carbure monobloc et à plaquettes brasées sont livrés au diamètre et tolérances nominales commandés.
- > Carbure monobloc = 2/3 de tolérance
- > Expansible = 1/2 tolérance

Nous vous recommandons de mesurer l'alésage et si nécessaire l'alésoir.

MESURE


- > Le diamètre de l'alésoir peut être vérifié avec un micromètre. Pour obtenir une mesure efficace, les deux arêtes mesurées doivent être diamétralement opposées (elles sont marquées d'un point).
- > L'alésoir doit être mesuré au plus proche du bout, la conicité arrière pouvant altérer la mesure.

Attention à ne pas endommager le chanfrein.

EXPANSION

- > Pour régler l'alésoir expansible, il faut tourner la vis avec la clé dans le sens des aiguilles d'une montre jusqu'à atteindre le diamètre souhaité. 30° (soit 5 minutes) correspondent à une modification de +/- 6 à 12 microns selon le diamètre de l'alésoir.
- > Cette manipulation doit être effectuée pour compenser l'usure des arêtes uniquement. Si le diamètre est supérieur au diamètre souhaité, desserrer complètement la vis et recommencer l'opération.

INSTRUCTIONS D'UTILISATION

	TYPE 2919	- 2920		TYPE 2	921
1	Nettoyer parfaitement chacune des pièces.		1	Nettoyer parfaitement chacune des pièces et graisser le filet du porte-outil (1).	
2	Faire coulisser la bague coupante (2) jusqu'à la partie conique du porte-outil (1). Les goupilles du porte-outil et le repère sur la bague coupante (2) doivent être alignés.	C D E	2	Positionner la bague coupante (2) sur le porte-outil (1) (partie coupante vers l'avant). Le repère sur le porte-outil (1) et le repère sur la bague d'alésage (2) doivent être alignés.	B A
3	Pour une lubrification minimale uniquement (MQL): Insérez le joint torique (3) dans les deux rainures.	A Porte-outil B Bague coupante C Joint torique	3	Glisser la douille conique (4) sur le porte-outil.	A Porte-outil avec goupille B Bague coupante C Bague d'alésage
4	Faire coulisser la douille (4) et l'écrou de réglage (5) sur le porte-outil en serrant légèrment l'écrou de réglage.	D Douille E Clé et écrou de réglage	4	Serrer légèrement l'écrou de réglage (5) à la main dans le sens de la flèche (vérifier le symbole sur l'écrou).	D Douille conique E Clé et écrou de réglage
5	Le trou de lubrification le plus proche du repère de la douille (4) doit être aligné avec l'arrète de coupe de la bague coupante (2).	2919 2920 2 avec clé 1 avec clé	5	Le trou de lubrification qui est le plus proche du repère sur le porte- outil (1) doit être en face du dégagement copeaux sur la bague d'alésage (2).	
6	Avant de serrer l'écrou de réglage (5), mettre en contact les alvéoles de la bague coupante (2) avec les goupilles du porte-outil dans le sens de la rotation.		6	Avant de serrer l'écrou de réglage (5), mettre en contact les alvéoles de la bague d'alésage (2) avec les goupilles du porte-outil contre le sens de la rotation.	
7	Serrer l'écrou de réglage (5) jusqu'au milieu de la tolérance du diamètre.		7	Serrer l'écrou de réglage (5) jusqu'au milieu de la tolérance du diamètre.	

PRINCIPES DE BASE

A la livraison, toutes les bagues coupantes fixes et montées sur un porte-outil sont rectifiées selon le diamètre et la tolérance du trou. Bagues coupantes expansibles = 1/2 de la tolérance. Nous recommandons de mesurer le trou et la bague coupante seulement si nécessaire. Ne pas mesurer des bagues coupantes désserrées ou non montées.

MESURAGE

Le diamètre de la bague coupante peut être contrôlé avec tout micromètre disponible dans le commerce. Les deux dents à mesurer sont face à face à 180° et leur position est marquée avec un repère. A cause de la conicité des dents, l'alésoir doit être mesuré près de l'entrée. Il faut faire attention à ne pas endommager la géométrie de l'entrée.

IMPORTANT

Nous recommandons de régler les bagues d'alésage expansibles au milieu de la tolérance. Pour un besoin de pièces détachées, nous consulter.

CAUSES ET REMÈDES

SOLUTIONNEZ RAPIDEMENT VOS PROBLÈMES

PROBLÈME	S ALÉSAGE
	Trop large
	Trop étroit
	Conique vers le bas
	Conique vers le haut
>	Déformé avec traces de vibrations ou écrouissage
	Rayures, sillons «avance marquée»
	Mauvais état de surface
	Serré / forcé

REMÈDES **CAUSES** a) Corriger l'alignement, utiliser un mandrin réglable a) L'alésoir ne tourne pas rond sur la machine ou mandrin flottant b) Collage sur l'arête b) Utiliser un autre lubrifiant, diminuer la vitesse de coupe c) Lubrifiant inapproprié c) Corriger le lubrifiant (% d'huile, qualité) d) L'alésoir est trop gros c) Utiliser un alésoir plus petit a) Utiliser un alésoir plus petit ou réaffûté l'actuel a) L'alésoir est trop petit au bon diamètre b) L'alésoir est usé b) Reconditionner l'alésoir (affûter ou réparer) c) Le lubrifiant n'est pas approprié c) Corriger le lubrifiant (% d'huile, qualité, pression...) d) La profondeur de coupe est trop petite d) Sélectionner l'épaisseur de coupe selon l'abaque donné e) La vitesse de coupe est trop faible ou trop rapide e) Sélectionner les paramètres de coupe selon l'abaque donné a) Corriger l'alignement, utiliser un mandrin réglable ou mandrin flottant a) Mauvais alignement b) Problème de conicité arrière sur l'alésoir b) Réduire les avances ou utiliser une géométrie plus adaptée à l'application/matière usinée a) Corriger l'alignement, utiliser un mandrin réglable ou a) Mauvais alignement mandrin flottant a) Défaut de concentricité ou a) Corriger l'alignement, utiliser un mandrin réglable d'alignement de l'alésoir dans la machine ou mandrin flottant b) Coupe asymétrique de l'alésoir b) Améliorer la rectitude, position et qualité du percage c) Revoir la fixation de la pièce c) Déformation de la pièce en raison du bridage a) L'alésoir ne tourne pas rond dans la machine a) Utiliser un mandrin réglable b) Diminuer la vitesse de coupe ou réaffûter l'alésoir b) Collage sur l'arête ou listel a) Reconditionner l'outil a) Arêtes usées ou écaillées c) Régler l'alésoir à l'aide d'un mandrin réglable c) L'alésoir ne tourne pas rond sur la machine d) Se référer aux conditions de coupe du catalogue d) Conditions de coupe erronées e) Augmenter la pression de lubrification, utiliser un alésoir e) Mauvais arrosage, bourrage copeaux à arrosage par le centre a) Conicité arrière de l'alésoir est trop petite en a) Faire réparer l'alésoir chez le fournisseur raison de l'usure ou desserrage de la vis de réglage b) Géométrie de l'alésoir est à changer b) Largeur de témoin cylindrique est trop grande c) Corriger le lubrifiant (% d'huile, qualité, pression...) c) Le lubrifiant n'est pas approprié

CONDITIONS DE COUPE

ALÉSOIRS CARBURE MONOBLOC

						Angles d'entrée										
	DIA	IGE	$\mathbf{R}^{^{\mathbb{R}}}$					Tr	ous déb	ouchant	s			Tro	us borgnes	
		USTRII				Star	ndard	Précision de postionnement	Rugosité /avance	Rugosité /avance	Contrôle du copeau	Contrôle du copeau	Brise copeau	Standard	Précision de postionnement	
L						Denture droite	Hélice à gauche	Denture droite	Denture droite	Hélice à gauche	Denture droite	Hélice à gauche	Denture droite	Denture droite	Denture droite	
		1.0570 1.1730	St52-3 C45	-700 -800	S355J2G3 C45U	GS01	GS07							GS01		
	Acier non allié ou bas carbone	1.0715	9SMn28	-700	11SMn30	GS01	GS01 GS07						GS01			
	Acier de	1.1191 1.7219	Ck45 26CrMo4	500–950	C45E 26CrMo4-2	GS01							GS01	-		
	traitement thermique	1.7225 1.8159	42CrMo4 51CrV4	500–950	42CrMo4 51CrV4	GS01							GS01	-		
Р	traitement thermique pré traité	1.7225 1.6580	42CrMo4 30CrNiMo8	950–1400	42CrMo4 30CrNiMo8	GS02	GS07	_						GS02		
	Acier de nitruration	1.8504 1.2344	34CrAl6 X40CrMoV5.1	950–1400 –900	34CrAl6 X40CrMoV5-1	GS02	GS07							GS02		
	Acier d'outillage	1.2343 1.2379 1.2358 1.2080 1.2714 1.2311 1.2312 1.2316 1.2738	X38CrMoV5 1 X155CrVMo12 1 60CrMoV18-5 X210Cr12 55NiCrMoV7 40CrMnMo7 40CrMnNiMoS8.6 X38CrMo16 45CrMnNiMo8.6.4	950-1400 -950 850-1000 950-1400 1100-1350 -1100 -1150 -1100 950-1150	X37CrMoV5-1 X153CrMoV12-1 60CrMoV18-5 X210Cr12 55NiCrMoV7 40CrMnMo7 40CrMnMoS8-6 X38CrMo16 45CrMnNiMoS8-6-4	GS02	GS07							GS02		
24	Inox austénitique	1.4301 1.4404 1.4571	X2CrNiMo17-12-2 X6CrNiMoTi17-12-2 X10CrNiMoTi18	500–950	X5CrNiMo18-10 X2CrNiMo17-12-2 X10CrNiMoTi18	GS02	GS07	Cor domand	noulton		ndant l	C'ACED INF	UCTRIC	GS02		
lvi	Inox martensitique	1.2709 1.4542 1.4568	X3NiCoMoTi18-9-5 X5CrNrCuNb16-4 X7CrNiAl17-7	800–1000	X3NiCoMoTi18-9-5 X5CrNrCuNb16-4 X7CrNiAl17-7	GS02	GS07	Sur demande, consultez votre correspondant DIAGER INDUSTRIE						GS02		
	Fonte grise	0.6025	GG25	100–400 (120–260 HB)	EN-GJI-250	GS01	GS07							GS01		
к	Fonte grise alliée	0.6678	GGL-NiCr35 2	150-250 (160-230 HB)	EN-GJLA-XNICr35-2	GS01	GS07	Sur demand	e. consultez	votre corre	espondant I	DIAGER IND	USTRIE	GS01		
	Fonte à graphite sphéroîdale	0.7060 0.7070	GGG60 GGG70L	400–800 (120–310 HB)	EN-GJS-600-3 EN-GJS-700-2U	GS01	GS07		,					GS01		
	Fonte vermiculaire	0.8155	GTS55	350-700 (150-280 HB)	EN-GJMB-550-4	GS01	GS07							GS01		
	Alliage de cuivre. bronze. maiton					GS03	GS07							GS03	-	
N	Allaige d'aluminium <7%					GS03	GS07	Sur demand	e, consultez	votre corre	espondant I	DIAGER INC	USTRIE	GS03	-	
	Allaige d'aluminium <7%					GS03	GS07							GS03		
	Alliages de Titane. moyenne résistance	3.7115 3.7164	TiAl5Sn2.5 TiAl6V4	-950	TiAl5Sn2-5 Ti6AlV4	GS02	GS07							GS02		
	Alliages de Titane. haute résistance	3.7174	TiAl6Sn2	900–1400	TiAl6V6Sn2	GS02	GS07							GS02		
s	Aciers réfractaires base nickel. moyenne résistance	2.467	NiCr12Al6MoNb	-950	NiCr12Al6MoNb	GS02	GS07	7 Sur demande, consultez votre correspondant DIAGER INDUSTRIE						GS02		
	Aciers réfractaires base nickel. haute résistance	2.4668	NiCr19Fe19NbMo	900–1400	Inconel 718 NiCr19Fe19Nb5Mo3	GS02	GS07	77					GS02			
	Alliage chrome cobalt					GS02	GS07	307				GS02				
	Fonte fortement alliée		Ni-hard. Ampco	300-600 HB	Ni-hard. Ampco	GS02	GS07	GS07				GS02				
н				45–52 HRC		GS02	Sur demande, consultez votre correspondant DIAGER INDUSTRIE				GS02					
	Acier trempé			53-59 HRC		GS02					GS02	-				
				60-65 HRC		GS02	GS07							GS02		

			P	rofo	ndeu	r de	coup	e (Ap) et a	ivano	e (Fz	2)					
		Devi	u aláaa		alésoir							d- 0	E 0/	Vite	esse c	le cou	ре
		Pou	raieso	ır a nei	_			ıns ce t	tableau		ravano	ce de 2	5 %	Carbure	C	arbure revê	tu
Rugosité /avance	Brise copeau		< Ø4	>Ø4 <		>Ø6.5	< Ø8	>Ø8 <		>Ø12		>Ø16		UWNK02	CWPK02	CWMP02	DIN01
Denture droite	Denture droite	Ap (Ø) mm	Fz mm/z	m/min	m/min	m/min	m/min										
		0.1 0.2	0.03 0.07	0.1 0.2	0.06 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.16	0.25 0.35	0.11 0.25	5-15	70-130	60-120	
		0.1 0.2	0.04 0.08	0.1 0.2	0.06 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.16	0.25 0.35	0.11 0.25	5-15	70-130	60-120	
		0.1 0.2	0.04 0.08	0.1 0.2	0.06 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.16	0.25 0.35	0.11 0.25	5-15	70-130	60-120	
Sur demar	nde,	0.1 0.2	0.04 0.08	0.1 0.2	0.06 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.16	0.25 0.35	0.11 0.25	20-50	70-130	60-120	
consultez vo correspond DIAC INDUST	lant SER	0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.10 0.20	5-15	60-120	50-90	
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.10 0.20	5-15	60-120	50-90	
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.10 0.20	5-10	50-80	40-70	
Sur demar consultez vo	otre	0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.10 0.20	5-11		30-60	20-50
DIAG	GER	0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.10 0.20	5-12		30-60	15-45
		0.1 0.2	0.04 0.08	0.1 0.2	0.06 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.17	0.25 0.35	0.11 0.25	10-30	100-150		
Sur demar consultez vo correspond	otre	0.1 0.2	0.04 0.08	0.1 0.2	0.06 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.17	0.25 0.35	0.11 0.25	5-15	60-80		
DIAG	BER	0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.1 0.20	10-20	80-130		
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.1 0.20	5-15	60-100		
Sur demar		0.1 0.2	0.04 0.08	0.1 0.2	0.05 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.16	0.25 0.35	0.1 0.20	15-30			
correspond DIAC	lant SER	0.1 0.2	0.04 0.08	0.1 0.2	0.05 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.16	0.25 0.35	0.1 0.20	20-40			
INDUST	RIE	0.1 0.2	0.04 0.08	0.1 0.2	0.05 0.1	0.15 0.25	0.07 0.14	0.15 0.25	0.08 0.15	0.2 0.3	0.09 0.16	0.25 0.35	0.1 0.20	15-30			
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16	5-15		15-25	20-30
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16	5-15		15-25	20-30
Sur demar consultez ve correspond DIAC INDUST	otre lant SER	0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16			20-50	10-30
INDOST	NIE	0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16			20-50	10-30
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16			20-50	10-30
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16	10-20	40-60	40-60	
Sur demar consultez vo correspond	otre	0.1 0.2	0.04 0.08	0.1 0.2	0.08 0.12	0.15 0.25	0.07 0.15	0.15 0.25	0.07 0.16	0.2 0.3	0.08 0.15	0.25 0.35	0.09 0.17	5-15	60-80	60-80	
DIAG	SER	0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16	5-10	30-40	30-40	
		0.1 0.2	0.03 0.07	0.1 0.2	0.04 0.08	0.15 0.25	0.05 0.10	0.15 0.25	0.06 0.12	0.2 0.3	0.07 0.14	0.25 0.35	0.08 0.16	5-10	30	30	

CONDITIONS DE COUPE

ALÉSOIRS À INSERTS BRASÉS

Γ				-						An	gles d	'entré	e		
	D	IAG	FP®					Trou	s déboud					Trou	us borgnes
		NDUST			1	Standard	rd	Précision de postionnement	Rugosité /avance	Rugosité /avance	Contrôle du	Contrôle du	Brise copeau	Standard	Précision de postionnement
		- LD C C .				Denture droite	Hélice à gauche	Denture droite	Denture droite	Hélice à gauche	Denture droite	Copeau Hélice à gauche	Denture droite	Denture droite	Denture droite
		1.0570 1.1730	St52-3 C45	-700 -800	S355J2G3 C45U	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
	Acier non allié ou bas carbone	1.0715	9SMn28	-700	11SMn30	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
		1.1191 1.7219	Ck45 26CrMo4	500–950	C45E 26CrMo4-2	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
	Acier de traitement thermique	1.7225 1.8159	42CrMo4 51CrV4	500–950	42CrMo4 51CrV4	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
Р	Acier de traitement thermique pré traité	1.7225 1.6580	42CrMo4 30CrNiMo8	950–1400	42CrMo4 30CrNiMo8	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
	Acier de nitruration	1.8504 1.2344	34CrAl6 X40CrMoV5.1	950–1400 –900	34CrAl6 X40CrMoV5-1	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
	Acier d'outillage	1.2343 1.2379 1.2358 1.2080 1.2714 1.2311 1.2312 1.2316 1.2738	X38CrMoV5 1 X155CrVMo12 1 60CrMoV18-5 X210Cr12 55NiCrMoV7 40CrMnMo7 40CrMnMiMoS8.6 X38CrMo16 45CrMnNiMoS8.6	950-1400 -950 850-1000 950-1400 1100-1350 -1100 -1150 -1100 950-1150	X37CrMoV5-1 X153CrMoV12-1 60CrMoV18-5 X210Cr12 55NiCrMoV7 40CrMnMo7 40CrMnMiMoS8-6 X38CrMo16 45CrMnNiMoS8-6-4	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
M	Inox austénitique	1.4301 1.4404 1.4571	X2CrNiMo17-12-2 X6CrNiMoTi17-12-2 X10CrNiMoTi18	500–950	X5CrNiMo18-10 X2CrNiMo17-12-2 X10CrNiMoTi18	GB02	GB07	GB09	GB04	GB07	GB10	GB07	GB20	GB02	GB09
	Inox martensitique	1.2709 1.4542 1.4568	X3NiCoMoTi18-9-5 X5CrNrCuNb16-4 X7CrNiAl17-7	800–1000	X3NiCoMoTi18-9-5 X5CrNrCuNb16-4 X7CrNiAl17-7	GB02	GB07	GB09	GB04	GB07	GB10	GB07	GB20	GB02	GB09
	Fonte grise	0.6025	GG25	100–400 (120–260 HB)	EN-GJI-250	GB01		GB08	GB03					GB01	GB08
K	Fonte grise alliée	0.6678	GGL-NiCr35 2	150-250 (160-230 HB)	EN-GJLA-XNICr35-2	GB01		GB08	GB03					GB01	GB08
	Fonte à graphite sphéroîdale	0.7060 0.7070	GGG60 GGG70L	400–800 (120–310 HB)	EN-GJS-600-3 EN-GJS-700-2U	GB01	GB06	GB08	GB03	GB06	GB10	GB06	GB20	GB01	GB08
	Fonte vermiculaire	0.8155	GTS55	350-700 (150-280 HB)	EN-GJMB-550-4	GB01	GB06	GB08	GB03	GB06	GB10	GB06		GB01	GB08
	Alliage de cuivre, bronze, maiton					GB01 GB12(PCD)	GB06	GB08	GB03	GB06	GB10	GB06		GB01 GB12(PCD)	GB08
N	Allaige d'aluminium <7%					GB02 GB12(PCD)	GB07	GB09	GB04	GB07	GB10	GB07		GB02 GB12(PCD)	GB09
	Allaige d'aluminium <7%					GB02 GB12(PCD)	GB07		GB04	GB07				GB02 GB12(PCD)	GB09
	Alliages de Titane, moyenne résistance	3.7115 3.7164	TiAl5Sn2.5 TiAl6V4	-950	TiAl5Sn2-5 Ti6AlV4	GB05								GB05	
	Alliages de Titane, haute résistance	3.7174	TiAl6Sn2	900–1400	TiAl6V6Sn2	GB05								GB05	
s	Aciers réfractaires base nickel. moyenne résistance	2.467	NiCr12Al6MoNb	-950	NiCr12Al6MoNb	GB02								GB02	
	Aciers réfractaires base nickel. haute résistance	2.4668	NiCr19Fe19NbMo	900–1400	Inconel 718 NiCr19Fe19Nb5Mo3	GB02								GB02	
	Alliage chrome cobalt					GB02								GB02	
	Fonte fortement alliée		Ni-hard. Ampco	300-600 HB	Ni-hard. Ampco	GB02		GB09						GB02	GB09
н				45–52 HRC		GB02		GB09						GB02	GB09
	Acier trempé			53–59 HRC	_	GB02		GB09						GB02	GB09
				60–65 HRC		GB02		GB09						GB02	GB09

			Profondeur de coupe (Ap) et avance (Fz)														litoss	o do d	20112					
		Géo					e droite GB04 (B09				à denturies : GI							/iless	e de	coup		
Rugosité /avance	Brise copeau					e alésoir						1	Diamètre			1		Carbure	C	arbure rev	êtu	Cermet	Cermet revêtu	PCD
Denture	Denture	< Ø Ap (Ø)	Fz	Ap (Ø)	719 Fz	Ap (Ø)	932 Fz	>= 9 Ap (Ø)	Fz	Ap (Ø)	512 Fz	Ap (Ø)	719 Fz	Ap (Ø)	732 Fz	>= 9 Ap (Ø)	Fz	UWNK02				UCPK02	ССРК02	DIN01
GB03	droite GB20	0.1 0.2	0.05 0.13	0.1 0.25	0.06 0.16	0.1 0.3	0.09 0.2	0.2 0.4	0.11 0.22	0.1 0.2	0.08 0.2	0.1 0.25	0.09 0.24	0.1 0.3	0.14 0.30	0.2 0.4	0.17 0.33	5-15	70-130	60-120	m/min	m/min 130-180	m/min 130-180	m/min
GB03	GB20	0.1 0.2	0.05 0.13	0.1 0.25	0.06 0.16	0.1 0.3	0.09 0.2	0.2 0.4	0.11 0.22	0.1 0.2	0.08 0.2	0.1 0.25	0.09 0.24	0.1 0.3	0.14 0.30	0.2 0.4	0.17 0.33	5-15	70-130	60-120		130-180	130-180	
GB03	GB20	0.1 0.2	0.05 0.13	0.1 0.25	0.06 0.16	0.1 0.3	0.09 0.2	0.2 0.4	0.11 0.22	0.1 0.2	0.08 0.2	0.1 0.25	0.09 0.24	0.1 0.3	0.14 0.30	0.2 0.4	0.17 0.33	5-15	70-130	60-120		130-180	130-180	
GB03	GB20	0.1 0.2	0.05 0.13	0.1 0.25	0.06 0.16	0.1 0.3	0.09 0.2	0.2 0.4	0.11 0.22	0.1 0.2	0.08 0.2	0.1 0.25	0.09 0.2	0.1 0.3	0.11 0.24	0.2 0.4	0.12 0.3	20-50	70-130	60-120		130-180	130-180	
GB03	GB20	0.1 0.2	0.05 0.13	0.1 0.25	0.06 0.14	0.1 0.3	0.07 0.16	0.2 0.4	0.08 0.2	0.1 0.2	0.08 0.2	0.1 0.25	0.09 0.2	0.1 0.3	0.11 0.24	0.2 0.4	0.12 0.3	5-15	60-120	50-90		110-160	110-160	
GB03	GB20	0.1 0.2	0.05 0.13	0.1 0.25	0.06 0.14	0.1 0.3	0.07 0.16	0.2 0.4	0.08 0.2	0.1 0.2	0.08 0.2	0.1 0.25	0.09 0.2	0.1 0.3	0.11 0.24	0.2 0.4	0.12 0.3	5-15	60-120	50-90		110-160	110-160	
GB03	GB20	0.1 0.2	0.05 0.13	0.1 0.25	0.06 0.14	0.1 0.3	0.07 0.16	0.2 0.4	0.08 0.2	0.1 0.2	0.06 0.15	0.1 0.25	0.08 0.18	0.1 0.3	0.09 0.21	0.2 0.4	0.11 0.23	5-10	50-80	40-70		80-120	80-120	
GB04	GB20	0.1 0.2	0.04 0.1	0.1 0.25	0.05 0.12	0.1 0.3	0.06 0.14	0.2 0.4	0.07 0.15	0.1 0.2	0.06 0.15	0.1 0.25	0.08 0.18	0.1 0.3	0.11 0.23	0.2 0.4	0.12 0.3	5-11		20-50	30-60			
GB04	GB20	0.1 0.2	0.04 0.1	0.1 0.25	0.05 0.12	0.1 0.3	0.06 0.14	0.2 0.4	0.07 0.15	0.1 0.2	0.06 0.15	0.1 0.25	0.08 0.18	0.1 0.3	0.11 0.23	0.2 0.4	0.12 0.3	5-12		15-45	30-60			
GB03		0.1 0.2	0.06 0.14	0.1 0.25	0.08 0.2	0.1 0.3	0.1 0.26	0.2 0.4	0.12 0.33									10-30	80-130		100-150			
GB03		0.1 0.2	0.06 0.14	0.1 0.25	0.08 0.18	0.1 0.3	0.1 0.24	0.2 0.4	0.12 0.3									5-15	50-70		60-80			
GB03	GB20	0.1 0.2	0.06 0.14	0.1 0.25	0.08 0.2	0.1 0.3	0.1 0.26	0.2 0.4	0.12 0.33	0.1 0.2	0.08 0.16	0.1 0.25	0.1 0.23	0.1 0.3	0.13 0.31	0.2 0.4	0.16 0.4	10-20	70-120		80-130	100-200	100-200	
GB03		0.1 0.2	0.06 0.14	0.1 0.25	0.08 0.18	0.1 0.3	0.1 0.24	0.2 0.4	0.12 0.3	0.1 0.2	0.08 0.16	0.1 0.25	0.1 0.23	0.1 0.3	0.13 0.31	0.2 0.4	0.16 0.4	5-15	50-90		60-100	70-160	70-160	
GB03		0.1 0.2	0.06 0.12	0.1 0.25	0.08 0.18	0.1 0.3	0.1 0.24	0.2 0.4	0.1 0.3	0.1 0.2	0.08 0.16	0.1 0.25	0.1 0.23	0.1 0.3	0.12 0.3	0.2 0.4	0.13 0.35	15-30				100-300	100-300	400-1000
GB04		0.1	0.06	0.1 0.25	0.08 0.18	0.1	0.1 0.24	0.2	0.1	0.1 0.2	0.08 0.16	0.1 0.25	0.1 0.23	0.1 0.3	0.12 0.3	0.2 0.4	0.13 0.35	20-40				50-200	50-200	400-1000
GB04		0.1 0.2	0.06 0.12 0.05	0.1 0.25	0.08 0.18	0.1 0.3	0.1 0.24 0.1	0.2 0.4 0.2	0.1 0.3									15-30						400-1000
		0.1	0.05	0.25	0.07	0.1	0.24	0.4	0.28									5-15			<30			
		0.2	0.11	0.25	0.17	0.3	0.24	0.4	0.28									5-15			<30			
		0.2	0.11	0.25	0.17	0.3	0.24	0.4	0.28										20-20	10-30				
		0.1 0.2	0.05 0.11	0.1 0.25	0.07 0.17	0.1 0.3	0.1 0.24	0.2 0.4	0.11 0.28										20-20	10-30				
		0.1 0.2	0.05 0.11	0.1 0.25	0.07 0.17	0.1 0.3	0.1 0.24	0.2 0.4	0.11 0.28										20-20	10-30				
		0.1 0.2	0.04 0.1	0.1 0.25	0.05 0.13	0.1 0.3	0.07 0.16	0.2	0.09 0.18									10-20	40-60					
		0.1	0.04	0.1 0.25	0.05 0.13	0.1	0.07 0.16	0.2	0.09 0.18									5-15	60-80					
		0.1 0.2 0.1	0.04 0.1 0.04	0.1 0.25 0.1	0.05 0.13	0.1 0.3	0.07 0.16 0.07	0.2 0.4 0.2	0.09 0.18 0.09									5-10	30-40					
		0.1	0.1	0.25	0.13	0.3	0.16	0.4	0.18									5-10	30					

CONCEVEZ VOTRE OUTIL

VOS OUTILS COUPANTS SUR MESURE AVEC PRÉCISION, INNOVATION ET PERFORMANCE, POUR RÉPONDRE À VOS EXIGENCES LES PLUS POINTUES.

QU	ESTIONNAIRE	POUR DÉFINI	R VOTRE OUTIL I	D'ALÉSAGE	
Société			Nom contact client		
Adresse			Email		
Pays			Téléphone		
1. MATIÈRE À USINER			3. ATTACHEMENT OUT	IL ET LUBRIFICATI	ON
Désignation standard			Cône morse	CM:	
Traitement thermique			Queue cylindrique	ø:	
Dureté (нкс, нв, нv)			Autre type d'attachement		
2. CARACTÉRISTIQUES	DE L'ALÉSAGE		Broche machine	Horizontal	Vertical
ø et tolérance pièce:			Outil	Fixe	Rotatif
ø de pré-alésage (perçage)			Arrosage par le centre	Oui	Non
Méthode de pré-alésage			4. ARROSAGE		
Trou	Débouchant	Borgne	Type (Emulsion, huile entière, MQL)		
Fond d'alésage à être usiné	Oui	Non	Concentration		
Trous sécants	Oui	Non	Pression d'arrosage disponible		
Si oui, longueur de coupe interrompue			5. MACHINE		
ø de pré-alésage (perçage)			Fabriquant et modèle		
Etat de surface Ra / Rt / Rz			Avance	Fixe	Variable
Tolérance de défaut de circularité			Rotation	Fixe	Variable
Tolérance de défaut de cylindricité			Défaut de faux rond sur la broche	Faible	Important
Autres exigences qualités			6. VOLUME DE PRODU	CTION	
			Nombre de trous par an		
DIAG			Performances recherchées (temps de cycle, qualité, cout outil/pièce)		

7. PLAN PIÈCE	
Merci de nous fournir un plan pièce ou faire un dessin de l'alésage à réaliser	

NOTES

C'EST AUSSI UN SAVOIR-FAIRE DANS L'ÉTUDE

ET LA FOURNITURE D'OUTILS SPÉCIAUX PCD POUR LE PERÇAGE, LE FRAISAGE ET L'ALÉSAGE!

CONTACT

contact@diager-industrie.com +33 (0)3 84 73 70 20

diager-industrie.com

DIAGER INDUSTRIE

ZI - rue Claude Nicolas Ledoux BP 30036 FR-39801 – Poligny France

Catalogue Aero composites

Catalogue Soft materials

Eshop Diager Industrie

